The conformally invariant wave equation near the cylinder at spacelike infinity

Jörg Hennig

joint work with

Jörg Frauendiener

Department of Mathematics and Statistics University of Otago Dunedin, New Zealand

GR21, New York City, 10-15 July 2016

Jörg Hennig (University of Otago, New Zealand)

UNIVERSITY OTAGO

Te Whare Wānanga o Otāgo

NEW ZEALAND

Introduction

- Conformal compactification of asymptotically simple spacetimes: Mathematical difficulties can arise near spacelike infinity *i*⁰.
- Helmut Friedrich's generalised conformal field equations are adapted to an appropriate treatment of *i*⁰, which was thought of before as a point, but is now 'blown up' to a cylinder S² × [−1, 1] that connects past and future null infinity I[±].
- To what extend can fields near i^0 be obtained numerically?
- *Toy model: Conformally invariant wave equation* (in 4 dimensions) on Minkowski or Schwarzschild background,

$$g^{ab}\nabla_a\nabla_b f - \frac{R}{6}f = 0.$$

Conformal weight is -1, i.e. if \tilde{f} solves the equation for a metric \tilde{g}_{ab} , then $f = \Theta^{-1}\tilde{f}$ solves the equation for $g_{ab} = \Theta^2 \tilde{g}_{ab}$.

 Typical problem in some numerical methods: Time step restricted by CFL condition. → 𝒴⁺ cannot be reached with a finite number of steps. Here: fully pseudospectral time evolution

The fully pseudospectral scheme

- *Basic idea for solving* 1 + 1 *dimensional problems:* [JH and Ansorg 2009]
- Map the physical domain to one (or several) unit square(s) by introducing spectral coordinates (σ, τ) ∈ [0, 1] × [0, 1] such that the surface on which initial data are given corresponds to τ = 0.
- Enforce the initial conditions by expressing the unknown function $f(\sigma, \tau)$ in terms of another unknown $f_2(\sigma, \tau)$ via

$$f(\sigma,\tau) = \begin{cases} f_0(\sigma) + \tau f_1(\sigma) + \tau^2 f_2(\sigma,\tau), & \text{if function values and first} \\ f_0(\sigma) + \tau f_2(\sigma,\tau), & \text{if only function values are} \\ given \end{cases}$$

depending on the type of problem (first/second order equations, characteristic/Cauchy initial value problem).

Jörg Hennig (University of Otago, New Zealand)

The fully pseudospectral scheme

(a) Approximate the new unknown f_2 via

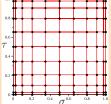
$$f_2(\sigma, \tau) \approx \sum_{j=0}^{N_\sigma} \sum_{k=0}^{N_\tau} c_{jk} T_j (2\sigma - 1) T_k (2\tau - 1)$$

for given spectral resolution (number of polynomials) $n_{\sigma} \equiv N_{\sigma} + 1$ and $n_{\tau} \equiv N_{\tau} + 1$.

• Obtain an algebraic system of equations by requiring that the equation(s), and suitable boundary or regularity conditions, are satisfied at a set of collocation points. We choose Gauss-Lobatto nodes $(\sigma_j, \tau_k), j = 0, \dots, N_{\sigma}, k = 0, \dots, N_{\tau}$:

$$\sigma_j = \sin^2\left(rac{\pi j}{2N_\sigma}
ight), \quad au_k = \sin^2\left(rac{\pi k}{2N_ au}
ight)$$

Starting from some initial guess, solve this system iteratively with the Newton-Raphson method.



Minkowski background

• Minkowski metric \tilde{g} in spherical coordinates

$$\tilde{g} = \mathrm{d}\tilde{t}^2 - \mathrm{d}\tilde{r}^2 - \tilde{r}^2(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2)$$

• Compactification:

$$\tilde{u} = \tilde{t} - \tilde{r}, \ \tilde{v} = \tilde{t} + \tilde{r};$$
 $\tilde{u} = \tan u, \ \tilde{v} = \tan v, \quad T = v + u, \ R = v - u$
 $T = 2t \cos(r), \quad R = 2r$

$$g = dt^2 - 2t \tan r \, dt dr - [1 + (1 - t^2) \tan^2 r] dr^2 - \sin^2 r (d\theta^2 + \sin^2 \theta \, d\phi^2)$$
$$\Theta = \frac{\cos(t \cos r - r) \cos(t \cos r + r)}{\cos r}, \quad \tilde{g} = \Theta^{-2} g$$

• Conformally invariant wave equation:

$$(1 - t^{2} \sin^{2} r)f_{,tt} - 2t \sin r \cos r f_{,tr} - \cos^{2} r f_{,rr}$$
$$-t(2 + \cos^{2} r)f_{,t} - 2\frac{\cos^{3} r}{\sin r}f_{,r} + \cos^{2} r f = 0$$

• Regularity conditions:

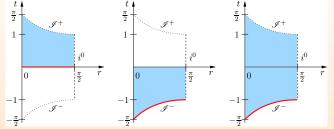
at
$$r = 0$$
: $f_{,r} = 0$, at $r = \frac{\pi}{2} (i^0)$: $f_{,t} = 0$

• General (regular) solution: $f(t, r) = \frac{F(t \cos r - r) - F(t \cos r + r)}{\sin(r)}$

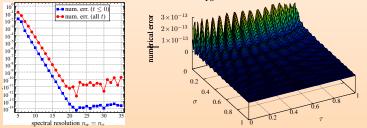
Jörg Hennig (University of Otago, New Zealand)

Minkowski background

• Cauchy or characteristic initial value problems:



• *Example:* characteristic IVP, $F = \frac{1}{10}x^3$ [Frauendiener and JH 2014]



Jörg Hennig (University of Otago, New Zealand)

Schwarzschild background

Solution in a neighbourhood of the cylinder at i^0

• Schwarzschild metric \tilde{g} in isotropic coordinates

$$\tilde{g} = -\left(\frac{1-\frac{2m}{\tilde{r}}}{1+\frac{2m}{\tilde{r}}}\right) \mathrm{d}t^2 - \left(1+\frac{m}{2\tilde{r}}\right)^4 (\mathrm{d}\tilde{r}^2 + \tilde{r}^2 \mathrm{d}\sigma^2)$$

• New coordinates $0 < \rho < \rho_{max} < 1, 0 \le \tau < 1$ [Friedrich, 2004]:

$$r = \frac{m}{2\tilde{r}}, \ t = \frac{2\tilde{t}}{m}; \quad t = \int_{r}^{\rho} \frac{\mathrm{d}s}{F(s)}, \ r = \rho(1-\tau), \ F(r) = \frac{r^{2}(1-r)}{(1+r)^{3}}$$
$$= \frac{2\rho A}{r^{2}} \mathrm{d}\rho \mathrm{d}\tau - \frac{A}{r^{2}} [2(1-\tau) - A] \mathrm{d}\rho^{2} - \mathrm{d}\sigma^{2}, \quad A := \frac{F(r)}{F(\rho)}, \quad \Theta = \frac{m(1+r)^{2}}{2r}$$

 $\tau = 1$: \mathscr{I}^+ , $\rho = 0$: i^0 , $\rho = 1$: coordinate singularity (A diverges)

• Conformally invariant wave equation:

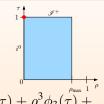
$$\left[2(1-\tau)-A\right]f_{,\tau\tau}+2\rho f_{,\tau\rho}-2\left[1-\frac{\rho(1-2r)}{r(1-r^2)}A\right]f_{,\tau}+4\frac{\rho^2 A}{r(1+r)^2}f=0$$

g =

Schwarzschild background

Solution in a neighbourhood of the cylinder at i^0

• *General behaviour of f near i*⁰: Expansion:



$$f(\tau, \rho) = \phi_0(\tau) + \rho \phi_1(\tau) + \rho^2 \phi_2(\tau) + \rho^3 \phi_3(\tau) + \dots$$

Conformal wave eq. leads to ODEs for ϕ_0, ϕ_1, \ldots

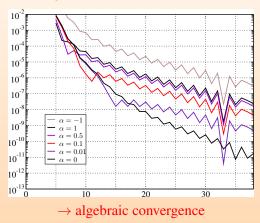
$$\begin{aligned} & \phi_0(\tau) = c_0 + c_1 \ln \frac{1-\tau}{1+\tau} \to \text{choose data with } f_{,\tau}(0,0) = -2c_1 = 0 \\ & \phi_1(\tau) = -2c_0\tau - \frac{2c_0+c_2}{1+\tau} + c_3 \to \text{regular} \\ & \phi_2(\tau) = \frac{4(2c_0-c_3)}{1+\tau)^2}(1-\tau)^2 \ln(1-\tau) + \text{regular terms} \\ & \to f_{,\rho\rho\tau\tau} \text{ singular, unless } (f_{,\rho} + f_{,\tau\rho})(0,0) = c_3 - 2c_0 = 0 \\ & \phi_3(\tau) = \frac{8(6c_0+5c_2+3c_4)}{3(1+\tau)^2}(1-\tau)^3 \ln(1-\tau) + \text{regular terms} \\ & \to f_{,\rho\rho\rho\tau\tau} \text{ singular, unless } (3f_{,\rho\rho} + 14f_{,\rho} - 36f)(0,0) = 0 \\ & \cdot \end{aligned}$$

Schwarzschild background

Solution in a neighbourhood of the cylinder at i^0

Family of initial data at $\tau = 0$: $f = 2 + \sin(5\rho)$, $f_{\tau} = (\alpha - 5)\rho$

- Choose $\rho_{\text{max}} = 0.5$
- For all α : ϕ_0 regular
- For $\alpha = 0$: ϕ_2 regular



Jörg Hennig (University of Otago, New Zealand)

The conformally invariant wave equation near the cylinder at spacelike infinity - 13 -

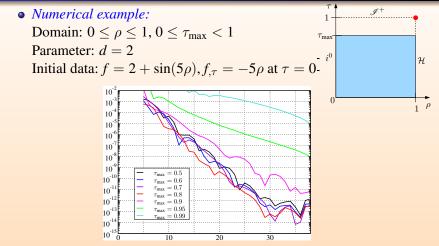
Schwarzschild background Including the horizon

• Again starting from isotropic coordinates, perform the following, modified coordinate transformation (with parameter $d > \frac{1}{2}$):

$$t = \int_{r}^{\rho(2-\rho)} \frac{\mathrm{d}s}{F(s)}, \ r = \frac{\rho(1-\tau)}{w+\rho(1-\tau)}; \ w = \frac{1-\rho}{(2-\rho)(1+d\rho)}, \ F(r) = \frac{r^2(1-r)}{(1+r)^3}$$

- Boundaries: \mathscr{I}^+ : $\tau = 1$, i^0 : $\rho = 0$, horizon \mathcal{H} : $\rho = 1$
- Similar behaviour at the cylinder (conditions on initial data can remove the leading-order logarithmic singularities at ρ = 0, τ = 1)

Schwarzschild background Including the horizon



 \rightarrow spectral convergence and highly accurate solutions, if the numerical domain is not too close to the singularity at $\rho = 1$, $\tau = 1$ [Frauendiener and JH, in preparation]

Jörg Hennig (University of Otago, New Zealand)

The conformally invariant wave equation near the cylinder at spacelike infinity - 15 -

Summary

- Minkowski background:
 - For initial data subject to regularity conditions (at the intersection of the initial surface with i^0 and at the origin) the conformally invariant wave equation has solutions that are regular up to \mathscr{I}^+ .
 - We can solve Cauchy problems in a neighbourhood of the cylinder or globally, and characteristic initial value problems with data at \mathcal{I}^- .

 \rightarrow spectral convergence and highly accurate solutions

- Schwarzschild background:
 - Solutions generally have logarithmic singularities at the intersection of 𝒴⁺ and i⁰. The leading singularities can be removed with appropriate restrictions for the initial data.
 → algebraic convergence, still very accurate solutions
 - We can use coordinates that include the event horizon \mathcal{H} and solve the wave equation in a domain with $0 \leq \tau \leq \tau_{max} < 1$ avoiding \mathscr{I}^+ .

 \rightarrow spectral convergence, if $\tau_{\rm max}$ is not too close to 1